Jess McIver

Dr. Jess McIver, PI

I lead the GW astrophysics group and the LIGO Scientific Collaboration group here at UBC. I currently serve as a co-chair of the LIGO Detector Characterization group, working at the interface between gravitational wave astrophysics and the LIGO detector instrumentation. Before I came to UBC as an assistant professor in 2019, I held a postdoctoral fellow position at the LIGO Laboratory at Caltech. I was based at the LIGO Livingston observatory during the first detection of gravitational waves in 2015, and I led the effort to validate this first detection as astrophysical. My research interests include gravitational-wave astrophysics with black holes, neutron stars, and core-collapse supernovae using detectors on Earth, like LIGO, as well as in space, like LISA. I’m also active in data science, machine learning, and characterization of large-scale physics experiment instrumentation.

Evan Goetz

Dr. Evan Goetz, Research Associate

My research areas of interest include astrophysics with gravitational waves from neutron stars and black holes, gravitational wave detector characterization and calibration, and developing analysis software tools to enable this science. I have been a member of the LIGO Scientific Collaboration for over 15 years, actively working on the detectors and analysis of LIGO data. I have developed new methods for analyzing data for continuous gravitational waves, increasing the accuracy and precision of detector calibration, and helped improve the quality of data from the LIGO detectors. I look forward to the transformational science that gravitational waves have to offer.

Dr. Miriam Cabero Müller, Postdoctoral fellow

My research focuses on detecting compact binaries and studying black holes. I was a member of the LIGO Scientific Collaboration throughout my PhD, actively contributing to the detection of the first gravitational-wave signals and to the characterization of noise sources in data from the Advanced LIGO detectors. I have also worked on studying theoretical aspects of black-hole horizons and I have developed parameter estimation methods to analyze the remnant black hole in binary coalescences as tools to test General Relativity with gravitational waves. Currently at UBC I am exploring machine learning techniques to optimize usage of telescope time in electromagnetic follow up of gravitational-wave candidates.

Alan Knee

Alan Knee, M.Sc. student

I work on parameter estimation of coalescing compact binaries via their emission of gravitational waves. The current focus of my research is looking at how the A+ upgrades to the LIGO detectors will help us resolve the relative spin orientations of binary black hole systems and the implications this has with respect to distinguishing between various formation channels.

Nayyer Raza, M.Sc. student

As a member of the LIGO Burst-Supernova team I study the gravitational waves emitted during core-collapse supernovae: violent explosions of massive stars towards the end of their life. My research focuses on using the Bayesian inference algorithm BayesWave to improve waveform reconstructions of the expected signals from supernovae in LIGO-Virgo data and learn about the dynamics of the astrophysical source.

Katie Rink

Katie Rink, UBC alumna

The primary focus of my research with the LIGO Detector Characterization group has been to investigate the effects of detector upgrades implemented throughout the third observing run (O3). Over the next few years I will also explore the impact of glitches on parameter estimation. For my masters research at UMass Dartmouth, I will be developing a discontinuous Galerkin solver for the Teukolsky equations to implement extreme mass ratio inspiral (EMRI) models into the SpECTRE code database.


Group alumni

Sarah Thiele, UBC student

I worked with Dr. Jess McIver and the LIGO detector characterization team for the Fall 2020 term. The primary focus of my project was characterizing transient noise signals called “glitches” to create a veto which can differentiate between glitches and astrophysical signals. This involved investigating compact binary coalescence (CBC) parameter estimation on short-duration glitch sets, analyzing trends in waveform injections classified by a convolutional neural network called Gravity Spy, and other approaches to aid in forming a differentiation metric.

Robert Beda, UBC student

In the summer of 2020, Robert Beda was awarded an NSERC USRA to work with the UBC GW astrophysics group to understand the effects of different observatory system configurations on the quality of output data, as quantified by glitch rates. In particular, the standard reaction to approaching earthquakes changes the behaviour of seismic isolation systems so as to potentially influence data quality. Understanding this relationship may contribute towards development of observatory systems that collect even better data despite stressful environmental conditions. Github gwpy scripts

Maryum Sayeed

Maryum Sayeed, UBC alumna

Maryum Sayeed graduated from the University of British Columbia with a Combined Honours in Physics & Astronomy B.Sc. degree in May 2020 after working with the UBC GW astrophysics group on the impacts of non-stationarity data on astrophysical parameter estimation of compact binary coalescences. She is putting her LIGO data analysis skills to work in the technology consulting sector in Alberta.